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Synchronous patterns in complex systems
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When a complex network is slightly desynchronized, a few of the network nodes will be escaping from
the uniform synchronization background frequently with a random fashion, leading to the intermittent network
synchronization. Here, based on the eigenvectors of the network coupling matrix, we propose a new method
which is able to figure out the unstable nodes in the general case of desynchronized complex networks. Moreover,
with this method, we are also able to regulate the seemingly random network dynamics into stable and visible
synchronous patterns. The efficiency of this method is verified by a variety of network models, including varying
the network structures, the node local dynamics, and the desynchronization types. Our studies show that, even
for the complex network systems, synchronous patterns can still be identified and characterized.
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I. INTRODUCTION

An amazing feature of the spatiotemporal nonlinear systems
in nature is that under certain conditions they can be self-
organized into various patterns, which has stimulated the
extensive studies of pattern formation over the past half century
[1,2]. In general, the systems considered are homogeneous
in space and the generated patterns are of regular structures,
e.g., the Turing patterns in autocatalytic chemical reactions
[3,4]. Recently, inspired by the rapid progress of network
science, attentions have been also paid to the formation of
patterns in inhomogeneous systems represented by complex
networks [5–7]. However, due to the complexity of the network
structure, the patterns in such systems are highly fragmented
and scattered, making it difficult to be figured out [8,9].
Regarding this, one important issue in studying patterns in
complex systems has been developing new methods for the
purpose of pattern identification [10–12]. In Ref. [10], based
on the properties of the critical mode characterzing the system
destabilization, the authors have investigated the formation of
Turing patterns in the network-organized activator-inhibitor
systems, where some striking difference from the classical
systems have been revealed. In Refs. [11,12], by a new method
called dominant phase advanced driving (DPAD), the authors
have successfully figured out the target-wave-like patterns in
oscillatory complex networks consisting of a large number
of excitable nodes, which gives a strong indication to the
generation of rhythm clocks in many biological systems [13].
Despite of the progresses have been made, the study of pattern
formation in complex network systems is still in its infancy,
and many new forms of patterns are to be explored.

As a typical phenomenon of coupled oscillator systems,
the synchronization behavior has attracted continuous interest
in the field of nonlinear science [14,15]. Recently, initiated
by the discovery of the small-world and scale-free proper-
ties in many real and man-made systems, a new surge of
studies has been formed on the synchronization of complex
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networks [16,17], in which the important roles of the network
topology on synchronization have been discovered [18,19].
Most of the studies, however, focus on only the stability
of the homogeneous synchronization state, e.g., the global
network synchronization, while the dynamics and stabilities of
the inhomogeneous synchronization states have been largely
overlooked, e.g., the synchronous patterns [20,21]. As global
synchronization sometimes is regarded as harmful to the
functioning of realistic systems, e.g., the epileptic seizure [22],
the study of network desynchronization therefore is necessary
and meaningful. The desynchronization of random networks
has been investigated in Ref. [20], where an interesting
finding is that, nearby the synchronization transition point, the
network undergoes the typical process of on-off intermittency.
Specifically, during the process of system evolution, a few of
the network nodes are found to be escaping and rejoining
the uniform synchronization background frequently with a
random fashion. This small number of unstable nodes, while
playing a key role in the network synchronization, have not
yet been well characterized. For instance, it remains unknown
how to figure out the unstable nodes from the given network
structure.

In the present work, by the method of eigenvector analysis,
we will show that the unstable nodes in the desynchronized
complex systems indeed can be identified. A striking finding
is that, after a reordering of the network nodes, the seemingly
random dynamics of the desynchronized system can be
transformed into stable and visible synchronous patterns. That
is, the patterns familiar in the classical systems can still be
observed in complex systems, but from a different viewpoint.
The rest of the paper is organized as follows. In Sec. II, we shall
present the model of complex network, and demonstrating
the phenomenon of intermittent synchronization. In Sec. III,
we shall first propose our new method for the identification
of unstable nodes, and then showing how to figure out the
synchronous patterns from the seemingly random dynamics.
Pattern identification in clustered complex networks will be
discussed in Sec. IV, in which the important roles of the
network structures on patterns shall be addressed. Finally, in
Sec. V we shall give our discussions and conclusion.
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II. MODEL AND PHENOMENON

We consider the following model for the complex network
of coupled nonlinear oscillators [19,23],

ẋi = F(xi) + ε

N∑

j=1

cij [H(xj ) − H(xi)], (1)

where i,j = 1, . . . ,N are the node indices, x is a d-
dimensional vector characterizing the oscillator (node) state,
and ε is the uniform coupling strength. F and H represent,
respectively, the dynamics of the isolated oscillators and the
coupling function between them. The coupling matrix, C, is
defined as cij = aij /ki , where {aij } is the adjacency matrix
describing the network structure: aij = 1 if nodes i and j

are directly connected in the network, and aij = 0 otherwise;
and ki = ∑

j aij is the number of connections (degree) for
the ith node. For simplicity, we employ the chaotic logistic
map, F (x) = 4x(1 − x), as the node local dynamics, and
using H (x) = F (x) as the coupling function. (The findings
established on this model are general for the complex net-
work of coupled nonlinear oscillators, as will be discussed
later.)

The synchronization of the above network can be analyzed
by the method of master-stability-function (MSF) [24–26],
which can be briefed as follows. Let xs be the synchronous
manifold of the oscillators and δxi = xi − xs be an infinitesi-
mal distance that the ith oscillator is perturbed from xs , then the
evolution of δxi is governed by the equation (in the linearized
form)

δẋi = DF(xs) + ε

N∑

j=1

cij DH(xs)(δxj − δxi), (2)

where DF and DH are the Jacobian matrices of the cor-
responding vector functions evaluated on xs . Projecting
{δxi} into the eigenspace spanned by the eigenvectors, {ei},
of the coupling matrix C, the set of equations described
by Eq. (2) can be diagonalized into N decoupled mode
equations

δẏi = [DF(xs) + ελiDH(xs)]δyi, (3)

where 0 = λ1 > λ2 � · · · � λN are the eigenvalues of the
coupling matrix and δyi is the ith eigenmode associated with
λi . Here, the two non-zero extreme eigenvalues, λ2 and λN , are
named the boundary eigenvalues. Denoting �i as the largest
Lyapunov exponent for the equation of mode i [calculated from
Eq. (3) by λi], then, to make the network synchronizable, the
necessary condition is that except the trivial mode δy1 (which
represents the motion of the synchronous manifold itself),
all other modes of the system, {δyl,l = 2, . . . ,N}, should be
damping with time, i.e., �(σl ≡ −ελl) < 0 for l > 1. Previous
studies of MSF have shown that for the typical nonlinear
oscillators, the value of � is only negative within a bounded
region in the parameter space, σ ∈ (σ1,σ2) [27]. For the
specific case of chaotic logistic map considered here, we have
σ1 = 0.5 and σ2 = 1.5 [21]. Therefore, to make the network
synchronizable, the following two conditions, −ελ2 > σ1 and
−ελN < σ2, should be satisfied simultaneously. For the fixed
network structure, if the eigenratio R ≡ λN/λ2 < σ2/σ1, then
whether the network can be synchronized is determined by

solely the coupling strength, ε. Speaking alternatively, the
network is only synchronizable in the regime ε ∈ (ε1,ε2), with
ε1 = −σ1/λ2 and ε2 = −σ1/λN the two critical points that
mark the transitions of the network synchronization (which
are also known as the long- and short-wave bifurcation points
in previous studies of coupled regular networks [28,29]).

We start by showing the intermittency phenomenon of
network synchronization around the above transition points.
To simulate, we generate a scale-free-type network by the
BA growth algorithm [6], which contains N = 800 nodes and
the average node degree is 〈k〉 = 16 [Fig. 1(a)]. From the
network structure we can construct the coupling matrix, and
then calculate the two boundary eigenvalues. For this specific
network, we have λ2 ≈ −0.53 and λN ≈ −1.47. By the MSF
analysis briefed above, we can obtain the two transition points
for the network synchronization, ε1 ≈ 0.94 and ε2 ≈ 1.02. In
simulations, we first set the coupling strength to be inside the
stable regime, ε = 1. Then, after the network is synchronized,
we change the coupling strength to ε = 0.935, which is slightly
below the transition point ε1. In the meantime, the independent
and identically distributed (iid) random noise with the strength
D = 1 × 10−2 is added to the trajectories of the oscillators,
so as to perturb the system from the synchronous state. It
should be emphasized that, by this setting, only the 2nd
eigenmode of the system is unstable, �1 ≈ 6 × 10−3, while
the other eigenmodes are still in the stable regime, �l < 0,l =
2, . . . ,N . The synchronization degree of the ith node to the
whole network is evaluated by the error δx ′

i = |xi − x̄|, with
x̄ = ∑

j xj /N the network-averaged state. For the case of
slightly desynchronized system, we roughly have x̄ ≈ xs ,
especially when the size of the network is large enough [24].

A snapshot of the synchronization errors is plotted in
Fig. 1(a), where the value of δx ′ is characterized by the size
of the node. It is seen in this figure that the synchronization
errors of a few of the network nodes are distinguishingly
larger than the others. Besides the feature of heterogenous
distribution, the synchronization errors are also timely varying.
That is, the picture shown in Fig. 1(a) is non-stationary,
and is changing with time. The dynamic feature of the
synchronization errors is more clearly presented in Fig. 1(b),
where δx ′ is plotted as a function of time for all the network
nodes. A phenomenon observed in Fig. 1(b) is that, during
the system evolution, there are time intervals during which the
whole network is highly synchronized, e.g., the episode from
t = 580 to 600, as well as short periods where the network
is seriously desynchronized, e.g., the time from t = 800 to
1.2 × 103. To characterize the evolution of the global network
synchronization, we plot in Fig. 1(c) the network-averaged
synchronization error, δx ′

net(t) = ∑N
j=1 δx ′

j (t)/N as a function
of time. It is seen that as time increases, the value of δx ′

net
is frequently approaching 0 (reflecting a frequent visit of
the oscillator trajectories to the synchronous manifold), as
well as large bursts (showing the desynchronization of the
network). This phenomenon, which is known as the on-off
intermittency in traditional nonlinear studies [30,31], is general
for the case of slightly desynchronized complex networks. (In
Ref. [20], by a mean-field treatment, the problem of network
synchronization is transformed to the stability analysis of a
low-dimensional random dynamics, with which the on-off
intermittency can be justified mathematically).
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(a) (b)

(c) (d)

FIG. 1. (Color online) The intermittent synchronization of the networked chaotic logistic maps. The network is generated according to
the BA growth algorithm, which contains N = 800 nodes and the average degree is 14. The uniform coupling strength is ε = 0.935, with
which only the 2nd mode is slightly destabilized, �1 ≈ 6 × 10−3 > 0. (a) A snapshot of the synchronization errors, δx ′

i , where the size
of the nodes is set to be proportional to the amplitude of the synchronization error, while the colors are used for eye guiding. (b) After
a transient period of t = 1 × 103, the time evolution of the synchronization errors, δx ′, for all the network nodes. (c) The variation of the
network-averaged synchronization error, δx ′

net, as a function of time, which experiences the process of on-off intermittency. (d) The distribution
of the time-averaged synchronization error, δx ′

iT , where each data is averaged over a period of T = 1 × 103. Our tasks in the present work are
just to figure the unstable nodes in the complex network of (a), and identify the synchronous patterns in the seemingly random dynamics of (b).

Another interesting phenomenon observed in Fig. 1(b) is
that, although of the timely intermittent evolution, the locations
of the unstable nodes in the network are relatively stable.
This can be partially seen from the interrupted horizontal
lines in the figure. To quantify the synchronization stability
of the individual nodes, we calculate the time-averaged
synchronization error of the nodes, δx ′

iT = ∑T
t=1 δx ′

i/T , and
plot the distribution in Fig. 1(d). Indeed, it is seen that for a
few of the nodes the values of δx ′

T are distinguishingly large.
In particular, the value of δx ′

T for the node 570 (the most
unstable node) is larger than that of the node 11 (one of the
most stable nodes) by about three orders. Our specific tasks
of the present work therefore are: (1) figuring out the unstable
nodes in the network structure of Fig. 1(a), and (2) identifying
the synchronous pattern in the network dynamics of Fig. 1(b).

III. IDENTIFICATION OF UNSTABLE NODES
AND SYNCHRONOUS PATTERNS

The locations of the unstable nodes can be predicted from
the eigenvector of the destabilized mode in the network, with
the details the following. Let Q be a N × N matrix whose
ith column is composed by the ith normalized eigenvector
of the coupling matrix (associated with the eigenvalue λi),
we then have the following relationship between the trajec-
tory perturbations, δx = (δx1,δx2, . . . ,δxN )T , are the mode

perturbations, δy = (δy1,δy2, . . . ,δyN )T ,

δx = Qδy. (4)

For the case of slightly desynchronized system (the basic
requirement for MSF analysis), the mode perturbations are
growing with time as δyi(t) ∝ exp(�it), with �i,i = 1, . . . ,N

the largest Lyapunov exponents calculated from Eq. (3). Since
in Fig. 1 only the 2nd mode is slightly destabilized, while all
other modes are still stable, we thus have δy2(t) ∝ exp(�2t),
while δyl(t) → 0 for other modes. (For mode l = 1, the largest
Lyapunov exponent is 0, which leads to the constant infinites-
imal perturbation for δy1.) Therefore, the mode perturbations
can be treated as (0,δy2, . . . ,0)T , based on which the Eq. (4)
can be simplified to

δxi = e2,iδy2, (5)

where e2 = (e2,1,e2,2, . . . ,e2,N ) is the normalized eigenvector
associated with λ2 in the coupling matrix. For �2 
 1, we have
δy2 ∝ exp(�2t) ≈ �2t . Inputting this into Eq. (5), finally we
get the following estimation for the trajectory perturbations

δx ′
i ∝ |e2,i |. (6)

This equation is the key to our identification of the unstable
nodes, since it states that, statistically, the synchronization
error of a node is linearly proportional to the eigenvector
element that the node stands in the destabilized eigenmode.
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FIG. 2. (Color online) For the same network dynamics as plotted in Fig. 1 (ε = 0.935 and only the 2nd mode is slightly destabilized),
(a) the replotted snapshot of the node synchronization errors, δx ′

i , (b) the distribution of the eigenvector element for the destabilized mode, e2i ,
(c) the variation of the eigenvector element, |e2,i |, as a function of the time-averaged synchronization error, δx ′

iT , and (d) after reordering the
network nodes, the time evolution of the synchronization errors. The 8 nodes which have the largest synchronization errors in (a) correspond to
exactly the 8 nodes which have the largest eigenvector element in (b). By ε = 1.05 (only the N th mode is slightly destabilized), (e) the variation
of the eigenvector element, |eN,i |, as a function of δx ′

iT , and (f) the time evolution of the synchronization errors with the network nodes be
reordered according to the amplitude of the eigenvector elements. For both (c) and (e), we have numerically the relationship |ei | ∝ δx ′

T , which
agrees with the theoretical predication of Eq. (6).

The correspondence between δx ′
i and |e2,i |, as described by

Eq. (6), is well justified by numerical simulations. In Fig. 2(a),
we replot Fig. 1(a) by rearranging the nodes according to
their synchronization errors, i.e., nodes of the largest (smallest)
synchronization errors are arranged on the periphery (center)
of the network. In particular, at the most outer-ring of the
network, there locates the 8 most unstable nodes, which
are ordered as δx ′

1 > δx ′
2 > · · · > δx ′

8. In Fig. 2(b), by the
distribution of the eigenvector element, |e2,i |, we also mark
the 8 nodes which have the largest value of |e2,i |. By checking
the indices of the two set of nodes in the original network,
it is found that the 8 unstable nodes observed in Fig. 2(a)
are exactly matched with the 8 nodes marked in Fig. 2(b).
For instance, the node of the largest synchronization error in

Fig. 2(a), δx ′
570 ≈ 1.1 × 10−2 is just the one owning the largest

eigenvector element, |e2,570| ≈ 0.16, in Fig. 2(b).
As we have mentioned earlier, during the process of

network evolution, the node synchronization errors [as plotted
in Fig. 2(a)] will be dynamically changing with time. This
makes it necessary to check whether the identification works
for other moments of the evolution. Meanwhile, at the current
stage it is still unknown whether the same method can be used
to characterize the stability of the other nodes in the network.
To answer these questions, we have checked numerically the
statistical relationship between the eigenvector element, |e2,i |
and the time-averaged synchronization error, δx ′

iT , for all the
network nodes. The results are plotted in Fig. 2(c). Here, it
is clearly seen that, with the increase of δx ′

iT , the value of
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|e2,i | indeed is linearly increased, as predicted by Eq. (6). Our
numerical results thus suggest that, besides the most unstable
nodes, the stability of the other nodes in the network can still
be well characterized by the proposed method.

Having revealed the linear relationship between the eigen-
vector, |e2,i |, and the synchronization error, δx ′

i , the identi-
fication of the synchronous patterns in complex networks is
straightforward. Resorting the nodes by the decreasing order
of the eigenvector elements, i.e., |e2,1| � |e2,2| � · · · � |e2,N |,
in Fig. 2(d) we replot the time evolution of the synchronization
errors presented in Fig. 1(b). It is found that, in contrast to the
seemingly random dynamics [Fig. 1(b)], visible synchronous
patterns are presented. More specifically, at any moment of the
system evolution, the nodes of the smaller indices always have
the larger synchronization errors, despite of the intermittent
network dynamics. For this feature, we also say that the pattern
are timely stable. Another feature of the pattern observed in
Fig. 2(d) is that, during the episodes of network desynchroniza-
tion (the “off” states), the synchronization errors are always
propagated by a sequence of the reordered node index. For
instance, during the period from t = 300 to 500, it is the node
i = 1 (which corresponds to node 570 in the original index)
that be firstly perturbed from the uniform synchronization
background, and then this perturbation is gradually propagated
to other nodes by the increasing order of the node index. In
this sense, the patterns visualized in Fig. 2(d) not only reflect
the distribution and evolution of the synchronization errors, but
also showing the paths how the perturbations are propagated on
the network. [This path of perturbation propagation, however,
is virtual, and should not be understood as a real path composed
by the directly connected nodes in the network. Say, for
instance, if we use the most unstable node as the center and
reordering the other nodes by their distances to it, we get the
similar picture as Fig. 1(b), instead of the visible pattern as
shown in Fig. 2(d).]

To check the application scope of the proposed method,
we gradually decrease the coupling strength, so as to make
the system be shifting to the deeply desynchronized regime.
The simulations show that, around the transition point ε1,
as the coupling strength is decreased to 0.93 (below which
the 3rd eigenmode becomes unstable), the linear relationship
between |e2,i | and δx ′

iT are still well kept. However, by further
decreasing the coupling strength, this linear relationship
will be gradually destroyed, and the patterns becomes to
be smeared. Finally, at about ε = 0.72 (below which the
4th eigenmode becomes unstable), there is no more clear
relationship between |e2,i | and δx ′

iT , and the patterns return
to random again. So, nearby the transition point ε1 the region
for the clear node (pattern) identification is estimated to be
ε ∈ (0.93,ε1).

The same identifications also work when the network is
desynchronized from the other transition point, ε2. In this
case, it is the N th eigenmode of the coupling matrix that be
destabilized. As a result, the identification should be carried out
based on the property of the eigenvector eN . To demonstrate
this, we choose ε = 1.05 > ε2, and re-simulate the evolution
of the system dynamics. Similar to the results in Fig. 1,
the system is also found to be undergoing the process of
intermittent synchronization, and the synchronization errors
for a few of the nodes are distinguishingly large. In Fig. 2(e),

we plot the eigenvector element, |eN,i |, as a function of the
node synchronization error, δx ′

iT . Just like the case of mode 2
be destabilized, a linear relationship is also observed between
|eN,i | and δx ′

iT . Reordering the nodes according to |eN,i |, we
plot in Fig. 2(f) the time evolution of the synchronization
errors, which, again, shows the visible synchronous patterns.

Besides the situation of one-mode be destabilized, the
unstable nodes and synchronous patterns can still be well iden-
tified even when the 2nd and N th eigenmodes are (slightly)
destabilized simultaneously. This has been verified by another
scale-free-type network, which is specially constructed so as to
make both two boundary eigenmodes be slightly outside of the
stable regime. In this 2-mode destabilized case, we find that it
is the eigenmode which has the larger value of � that governs
the identification. More specifically, if �2 > �N (�2 < �N ),
the network nodes should be reordered by the decreasing order
of the element for the eigenvector e2 (eN ).

IV. PATTERN IDENTIFICATION IN CLUSTERED
COMPLEX NETWORKS

It has been well known that the dynamics of a complex
network could be largely affected by its underlying topology
[5], which makes it necessary to check the validity of our
method of node (patten) identification for other types of
network models besides the scale-free-type networks. To this
end, we have checked the same identifications for three other
types of complex networks that have been widely investigated
in literature, including the random networks, the small-world
networks, and the clustered networks [32]. For the random
and small-world networks, it is shown that, given the network
is slightly desynchronized, the unstable nodes can always be
properly identified by the method of eigenvector analysis, as
well as the synchronous patterns (not shown). However, when
dealing the clustered networks, it is found that the current
method is no more effective. Specifically, we find that the cur-
rent method can only identify the unstable nodes (synchronous
patterns) within each cluster, but failing to do this for the
whole network. This finding thus suggests that, to analyze the
clustered networks, the current method should be improved.

A distinguishing feature of the clustered network is that
the probability for a pair nodes to be connected inside a
cluster is much higher than that of different clusters [32]. As
far as the network eigenvectors are concerned, a significant
change caused by this topological feature is that the elements
of the 2nd eigenvector are of stage-like distribution [33,34].
That is, for a m-cluster network, the elements of the 2nd
eigenvector are clearly divided into m groups, with each group
stays on an individual platform. Since our method of node
(pattern) identifications is established on the eigenvectors of
the destabilized modes, the stage-like property of the 2nd
eigenvector thus is crucial to the proper identification of the
unstable nodes and synchronous patterns. Now the question
is: how to use the stage-like property of the 2nd eigenvector in
clustered complex networks for the purpose of node (pattern)
identification?

To investigate, we first consider the simple case of 2-cluster
complex network. The size of the 1st cluster is N1 = 120, and
the 2nd one is N2 = 80. Meanwhile, to make the cluster feature
clear, nodes inside each cluster are connected by a larger
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FIG. 3. (Color online) The eigenvector of the 2nd eigenmode and the relationship between the eigenvector element, |e2,i | and the node
synchronization error, δx ′

iT , for a 2-cluster network [(a),(b)], a 3-cluster network [(c),(d)], and the cat-brain network [(e),(f)]. (g) For the slightly
desynchronized cat-brain network, the evolution of the system dynamics with the original node index. (h) The evolution of the system dynamics
with the node index be reordered according to the improved method.

probability, pi = 0.8, while nodes in different clusters are con-
nected by a much smaller probability, pl = 0.1. In Fig. 3(a), we
plot the distribution of |e2,i | for the 2nd eigenmode. It is seen
clearly that the elements are divided into two groups, while
each group stands for a cluster. By tuning the coupling strength,
we let the network be slightly desynchronized from the
transition point ε1. The relationship between the eigenvector
element, |e2,i |, and the node synchronization error, δx ′

iT is
plotted in Fig. 3(b). It is found that, different from the
scale-free-type networks, the relationship between |e2,i | and
δx ′

iT is decomposed to two linear branches. Also, a checking
of the node index shows that each branch just corresponds to
one cluster in the network.

The brunched correspondence between |e2,i | and δx ′
iT is

common for the clustered complex networks. In Figs. 3(c)
and 3(d), we do the same analysis for a 3-cluster complex
network, where the size of the clusters is identical, N1 = N2 =
N3 = 300. Again, it is observed that the eigenvector elements
are divided into 3 groups, and the relationship between |e2,i |
and δx ′

iT consists of 3 linear branches. Also, the eigenvector
elements [Fig. 3(c)] and the brunches [Fig. 3(d)] are organized
according to the network clusters.

The finding that in a m-cluster network the correspondence
between |e2,i | and δx ′

iT is decomposed into m branches
seems to suggest the following method for nodes (pattern)
identification: regrouping nodes according to the clusters, and

then reordering the nodes within each cluster according to
their eigenvector elements. To verify this improved method,
we have analyzed the identifications of the unstable nodes
and patterns in the desynchronized cat-brain network. The
cortico-cortical network of cat brain consists of 53 nodes
(cortex areas) and about 830 links (fiber connections) [35]. The
cluster features, as well as other properties of this network, has
been well investigated in previous studies [36,37]. According
to their functions, the cortex areas are roughly divided into
two major divisions: the visual and auditory division which
contains 23 areas, and the somatomotor and frontolimbic
division which contains 30 areas.

To facilitate the analysis, we neglect the details of the link
weights in the original system, while adopting the general
scheme of weighted gradient network to investigate the syn-
chronization problem [23]. Under this scheme, the coupling
matrix in Eq. (1) is replaced by cij = aij k

β

j /
∑

j (aij k
β

j ), with
β a parameter that characterizes the distribution of the link
weight. An advantage of this coupling scheme is that the
network synchronizability can be flexibly adjusted without
changing the network structure. Setting β = 0.5, the two
boundary eigenvalues are λ2 = −0.47 and λN = −1.29. With
ε = 1.04 (which is slightly below the transition point ε1),
the 2nd eigenmode becomes unstable, with �2 ≈ 0.02. The
seemingly random evolution of the node synchronization
errors are plotted in Fig. 3(g), where the phenomenon of
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intermittent synchronization is evident. Regrouping nodes into
two clusters [Fig. 3(e)] and reordering nodes inside each cluster
according to their eigenvector elements [Fig. 3(f)], it is found
that the synchronization errors indeed can be regulated to
visible patterns, as shown in Fig. 3(h). It is interesting to see
that, corresponding to the clusters, the patterns are clearly
decomposed into two bands. [In Fig. 3(h), to guide the eyes,
nodes in the first cluster is reordered by an increasing order of
the eigenvector element.]

As the improved method is based on the stage-like distribu-
tion of the eigenvector, it is natural that, given the network has
the clear cluster structure (whatever the size distribution of the
clusters), the improved method should be always workable.
However, if the cluster feature is not clearly presented in the
network, e.g., pi ≈ pl , this method will lost it efficiency, and
should be replaced by the original method (the one discussed
in Sec. III).

V. DISCUSSIONS AND CONCLUSION

So far our studies have been focused on the only simple case
of coupled identical logistic maps. Since realistic networks
are typically represented by the coupled non-identical time-
continuous oscillators, it is therefore necessary to check
whether the identification method can be also applied to the
general complex systems. To check this out, we replace the
node dynamics with the chaotic Rössler oscillators which, in
its isolated form, is described by Fi(xi) = [−ωiyi − zi,ωixi +
0.2yi,0.2 + (xi − 5.7)zi], with x = (x,y,z) and ωi is the
natural frequency of the oscillator. The coupling function is
chosen as H(x) = x, with which the stable regime of the MSF
curve is bounded. This time, we generate a scale-free-type
network of N = 100 nodes with the average degree 〈k〉 = 8.
By the gradient coupling scheme (β = 0.5), the two boundary
eigenvalues of the network are λ2 = −0.5 and λN = −1.6.
In the case of identical oscillators, i.e., ωi = ω = 1, from the
MSF analysis we can obtain the range of coupling strength for
network synchronization, which is ε ∈ (0.31,2.82). To make
the oscillators nonidentical, we randomly choose 5 of the
oscillators in the network and change their natural frequency
to ωj = ω′ = 0.995. (This model of nonidentical network
is somewhat artificial, but could be still constructive to the
identification of synchronous pattern in some non-identical
networks, e.g., a slightly variation of the natural frequency
among the Rössler oscillators. However, when the node
dynamics are of significant difference, e.g., a large variation
of the oscillator parameters or the node dynamics has different
types, it remains a challenge how to identify the synchronous
patterns properly.)

With ε = 0.29, the network is slightly desynchronized from
the transition point ε1 ≈ 0.31, and showing the phenomenon of
intermittent network synchronization, as depicted in Fig. 4(a).
It is noticed that, comparing to the majority oscillators which
has the parameter ω = 1, the 5 oscillators of the parameter
ω′ = 0.995 are much more unstable. The large synchronization
errors of the 5 nodes can be attributed to the following two
reasons. Firstly, due to the parameter mismatch, the transition
point for oscillators of ω′ is larger to that of ω, i.e., ε1(ω′) >

ε1(ω), which leads to �2(ω′) > �2(ω) and consequently the
larger synchronization errors for these 5 oscillators. Secondly,

FIG. 4. (Color online) For the network of non-identical chaotic
Rössler oscillators, the time evolution of the node synchronization
errors with (a) the original node index and (b) the reordered node
index. In (a), the 5 (interrupted) horizontal lines occur at the nodes
of the differentiated parameter, ω′. In plotting (b), the 5 nodes of the
parameter ω′ are given the smallest indices, 1 to 5, while the resting
nodes are reordered according to the eigenvector element, |e2,i |, as
did in Figs. 2 and 3.

since the node synchronization error is defined as the difference
to the network-averaged state, i.e. δx ′

i = |xi − x̄|, it is natural
that the minor nodes of the different parameter will have larger
synchronization errors. Having understood these, it is straight-
forward to improve the identification method as follows:
treating the minor nodes of the different parameter specially
(giving the smallest indices), and then reordering the other
nodes of the network by the eigenvector element as before. This
improved method indeed works well, as depicted in Fig. 4(b).

To test the generality of the findings, we have carried
extensive simulations on a variety of network models, includ-
ing adopting different types of MSF curves, using different
coupling schemes, as well as considering other types of
dynamics for the oscillators. All the results show that, given
the network is slightly desynchronized, the unstable nodes
and the synchronous patterns can always be properly identified
by the method of eigenvector analysis. Although in the present
work we regard the phenomenon of intermittent synchroniza-
tion as the mark of “slight synchronization”, it should be
pointed out that the application of the method is not limited
to this special phenomenon. In our simulations, it is noticed
that in some special situations, even the network is not slightly
desynchronized, the unstable nodes and synchronous patterns
can still be identified. For instance, under the scheme of
gradient coupling, the unstable nodes (patterns) in the network
of Fig. 1 can be identified reasonably well even a number
of the eigenmodes (up to 20 eigenmodes) are destabilized
simultaneously. Another thing worthy of mentioning is that
the identifications are robust to the noise perturbations. For
instance, when iid random noise of strength 1 × 10−2 is added
to the network of chaotic Rösslers used in Fig. 4 during the
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system evolution, the synchronous patterns are still clearly
presented.

In summary, by the method of eigenvector analysis, we
have investigated the identifications of the unstable nodes
and synchronous patterns in slightly desynchronized com-
plex networks. It is found that, despite of the complex
network structure and the complicated network dynamics,
the synchronization stability of the individual nodes can still
be well predicted and characterized. Moreover, with this
identification method, the seemingly random dynamics of the
desynchronized networks can be regulated into stable and
visible synchronous patterns. We have tested this method for a
variety of network models and for different desynchronization
schemes, where the general finding is that, given the network is
slightly desynchronized, the unstable nodes and synchronous

patterns can always be effectively identified. Considering the
universal existence of synchronization in nature and the close
relationship between the synchronization behavior and the
system functions, it is our believing that the findings obtained
will be helpful to the exploration of the high-level functions
in broad realistic systems, say, for instance, the generation of
consciousness and mind in the network of human brain [38].
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