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Network growth under the constraint of synchronization stability
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While it is well recognized that realistic networks are typically growing with time, the dynamical features
of their growing processes remain to be explored. In the present paper, incorporating the requirement of
synchronization stability into the conventional models of network growth, we will investigate how the growing
process of a complex network is influenced by, and also will influence, the network collective dynamics. Our
study shows that, constrained by the synchronization stability, the network will be growing in a selective and
dynamical fashion. In particular, we find that the chance for a new node to be accepted by the growing network
could have a large variation, i.e., it follows roughly a power-law distribution. Furthermore, we find that, with the
dynamical growth, the network is always developed into structures of clear scale-free features, despite the form
of the link attachment (preferential or random). The dynamical properties of network growth are studied using
the method of eigenvalue analysis, and they are verified by direct simulations of coupled chaotic oscillators. Our
study implies that, driven by the network collective dynamics, network growth could also be highly dynamical.
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I. INTRODUCTION

Complex networks have the feature of growth. This is
evidenced by numerous real-world systems, man-made or
natural, and has been commonly regarded as one of the
key ingredients supporting the evolution of realistic networks
[1–3]. In particular, in the pioneering work of Barabási and
Albert (BA) [4], which takes into account the mechanisms
of network growth and preferential link attachment, a growth
network model capable of reproducing the power-law degree
distribution observed in many realistic complex systems has
been proposed. In the BA growth model, starting from a small
nucleus of globally connected nodes, the size of the network
is linearly increased by the subsequent addition of new nodes.
This type of network growth, however, is quite different from
the empirical observations of many realistic systems, where
the network growth is often shown to be nonmonotonic and
intermittent [5–9]. For example, in a technological network
such as an electric power grid [10–12], the introduction of a
new node (power station) will increase the load of the existing
nodes, which, once overloaded, will be broken down and may
trigger an avalanche over the network [13–15]. As a result,
the network size no longer increases monotonically, but rather
fluctuates with time. Even for situations in which the network
size increases monotonically, it is often hard to claim that
the growing process is smooth. Consider the evolution of
an ecological system as an example [16,17]. When a new
node (species) is introduced, depending on the stability of the
enlarged system, this new node may either die off or overcome
the competitions with the existing nodes and survive [17].
In this case, while new nodes are subsequently introduced
to the system, only some of the additions are accepted, i.e.,
the size of the network grows in an intermittent fashion [18].
The nonmonotonic, intermittent features of network growth
thus suggest that, driven by the collective dynamics of the

*Corresponding author: wangxg@zju.edu.cn

network, the growing process of complex networks could also
be highly dynamical—a point that has been largely overlooked
in previous studies.

Dynamical growth raises new questions, as well as new
challenges, in the study of evolutionary networks. For a
realistic network, to keep up with the changing environment
or to improve system performance, the network structure
must be continuously modified or updated [3]. To cope
with this situation in theory, different evolutionary network
models have been proposed and investigated in the past
[13–21]. Among these studies, a popular approach to modeling
network evolution is to rewire the network links according
to the network’s collective dynamics, e.g., for instance, the
rewiring of the network links based on the situation of node
synchronization [22–26]. (For a description of the recent
progress in this direction of research, please refer to Ref. [27]
and references therein.) In this study, an important feature of
network evolution is that the network size remains fixed. When
the network size is changeable, such as in the growing network
to be studied in the following, the evolution properties will be
changed significantly. These changes are mainly reflected in
two aspects: the manner and mechanism of the evolution. In
a growing network, the introduction of a new node will only
modify the local structure of the attached nodes while leaving
the remaining structure of the network unchanged, e.g., the
BA growth model [4]. In this way, the network structure is
developed in an accumulative fashion. This feature of network
evolution is different from that of the previous models of
fixed-size networks. For instance, in the model of link rewiring,
depending on the instant states of the nodes, a link may be
rewired repeatedly during the process of network evolution
[28–31]. Meanwhile, in terms of the evolution mechanism,
in a growing network it is the coevolution between the two
dynamics—one for the network growth and the other for the
network collective dynamics (synchronization)—that guides
the evolution direction, while for the case of a fixed-size
network, it is the interplay between the network structure and
collective dynamics that plays the key role [32–36]. For the
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above new features of a growing network, it is intriguing to
see what the coevolution is between the network growth and
collective dynamics.

In the present paper, employing synchronization as the
typical collective dynamics of a complex network [27,32],
we will investigate how the growing process of a network
could influence, and in turn be influenced by, the net-
work synchronization. In particular, we will incorporate the
requirement of global complete synchronization into the
growth of a complex network of coupled nonlinear oscillators,
and investigate how the two dynamics, the growing dynamics
and the node dynamics, affect each other during the course
of network evolution. Our main finding is that, constrained
by synchronization stability, the growing process of the
network could be highly dynamical. More specifically, we
find that the time interval for a new node to be successively
accepted by the growing network has a large variation, i.e.,
it roughly follows a power-law scaling. Furthermore, we
also find that, with dynamical growth, the scale-free feature
can naturally emerge in the network structure regardless of
the form of the link attachment. These findings have the
potential to extend our knowledge of evolutionary networks
considerably, as they could bring new attention to the rich
dynamics of network growth. Our work is partially stimulated
by the recent study of Ref. [18], in which the topological
properties of a growing network under the stability con-
straints of a stationary state are investigated. Contrary to
Ref. [18], we focus here on the dynamical properties of the
growing process, with special attention given to the coevo-
lution between network growth and the network’s collective
dynamics.

The rest of the paper is organized as follows. In Sec. II,
we will present our model of a growing dynamical network
and introduce the method of eigenvalue analysis. In Sec. III,
we will investigate in detail the growth of a constrained BA
network. The dynamical features of the growing process will
be described and characterized, as well as the topological
properties of the generated network. In Sec. IV, we will
study the growing process of the constrained random network
(the new nodes are attached to the network in a random
fashion), and the emergence of a scale-free feature during
the process of network evolution will be highlighted and
addressed. In Sec. V, based on the method of eigenvalue
analysis, we will explore the underlying mechanisms of
the observed dynamical growth, together with the influence
of the synchronization constraint on the form of the link
attachment. Finally, In Sec. VI we will give our discussions and
conclusion.

II. THE MODEL

Our first model of growing network is adopted from the BA
model [4], but with nonlinear dynamics on the network nodes.
Specifically, starting from a small, synchronizable nucleus of
m0 nonlinear oscillators (nodes), at each time step δtg of
the network growth a new node will be introduced, which
is connected to m of the existing nodes by the manner of
preferential attachment �i = ki/

∑
j kj , with i,j = 1,2, . . . ,n

the node indices and ki the degree of the ith node. If the
addition of the new node does not break the stability of network

synchronization, then the new node will be accepted and the
network size will be increased by one; otherwise, the new
node will be rejected and the network structure will remain
unchanged. Here, for simplicity, we set the local dynamics
of the nodes to be identical, and we employ the scheme of
normalized coupling strength [35,36]. With these settings, the
dynamics of the ith oscillator reads

ẋi = F(xi) + ε

ki

n∑

j=1

aij [H(xj ) − H(xi)], (1)

where F and H represent the dynamics of the isolated oscillator
and the coupling function, respectively. The network structure
is characterized by the adjacency matrix {aij }, in which aij =
1 if oscillators i and j are directly connected, and aij = 0
otherwise. ε > 0 is the uniform coupling strength, which is
also the total incoming coupling strength of each oscillator,
i.e., the node coupling intensity. Please note that the coupling
strength that i receives from j , cij = (εaij )/ki , in general is
different from the one that j receives from i, i.e., the network
is weighted and directed.

Due to the feature of network growth, in Eq. (1) the network
size is no longer fixed, but rather it is timely varying, i.e., n ∼
n(t). This raises the problem of time-scale separation in char-
acterizing the network evolution [18,37], which has a direct
influence on the synchronization constraint. Let Ts and Tg be
the time scales that characterize the network synchronization
and growth, respectively. (In a practical situation, Ts could be
the transient time for network synchronization and Tg could
be the time interval between two adjacent node additions.)
If Ts � Tg , due to the “slow” response of the network’s
collective dynamics, the synchronization constraint will have
no impact on network growth, and the network evolution will
be identical to that of the BA model. In contrast, if Ts � Tg ,
the synchronization dynamics is much faster than the growth
dynamics, in which case the growing process can be regarded
as adiabatic. For the latter case, the network synchronization
will play its role and influence the network growth. As a
result, the generated network will be different from that of
the BA model. For both cases, the time scales of the two
dynamics (synchronization and growth) can be well separated,
and the network size is increased monotonically during the
course of network evolution. The situation will be much more
complicated when the two time scales are comparable, e.g.,
Ts ∼ Tg [37]. In that case, the two dynamics are fully coupled
and, depending on the instant network structure and collective
dynamics, the network size may either increase or decrease,
i.e., the growth is nonmonotonic. For the sake of simplicity,
in the present work we will concentrate on only the case of
Ts � Tg , which is generally the situation in technological and
neural networks, e.g., for example, the plasticity of neuron
synapses [38].

Having separated the time scales, we are now able to
decouple the dynamics of network synchronization from that
of network growth in addition to characterizing the network
synchronizability by the network topology. This is done using
the method of the master stability function (MSF) [39–41],
with the following details. Assuming that at moment tg
the network has n − 1 synchronized oscillators and a new
oscillator is introduced, then whether the enlarged network (of
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size n) is still synchronizable is determined by the following
set of variational equations:

δ̇xi = DF(xs) + ε

ki

n∑

j=1

aij DH(xs)[δxj − δxi], (2)

with i = 1,2, . . . ,n the node index. In Eq. (2), xs is the
synchronous manifold to which all the oscillators are assumed
to be synchronized, δxi = xi − xs is the trajectory divergence
of the ith oscillator from xs , and DF(xs) and DH(xs) are
the Jacobian matrices of the corresponding vector functions
evaluated on xs . To keep the network synchronizable, a
necessary condition is that all the trajectory divergences {δxi}
are damping with time. Projecting {δxi} into the eigenspace
spanned by the eigenvectors {vi} of the coupling matrix
C = {aij /ki}, the variational equations of Eq. (2) can be
diagonalized into n decoupled eigenmodes in the block form

ẏl = [DF(xs) + ελlDH(xs)] yl , l = 1, . . . ,n, (3)

where yl is the lth eigenmode transverse to the synchronous
manifold xs , and 0 = λ1 � λ2 � · · · � λn are the eigenvalues
of the coupling matrix C. Among the n eigenmodes, the
one associated with λ = 0 represents the motion parallel to
the synchronous manifold, and network synchronization is
achievable only when all other eigenmodes, yj ,j = 1, . . . ,n,
are damping with time, i.e., the largest Lyapunov exponent
of each eigenmode is negative, �(ελj ) < 0. For typical
nonlinear systems, it has been shown that the value of �(σ )
is negative only in a bounded range in the parameter space,
σ ∈ (σ1,σ2) [42]. Thus, to make the synchronous state stable,
the sufficient condition is that all the values of σj = ελj should
be contained in the range (σ1,σ2). In particular, we should have
ελ2 < σ2 and ελn > σ1 simultaneously, which leads to the
following necessary condition for network synchronization:
R = λn/λ2 < σ1/σ2 = Rc. For a network of undefined node
dynamics, e.g., one in which the values of σ1 and σ2 exist
but are not given, generally the smaller the eigenratio R

is, the higher the probability is that the network could be
synchronized. In this regard, another way to characterize the
network synchronizability is simply to calculate the eigenratio
R, which is dependent on only the network coupling
matrix C.

With the assumption of time-scale separation and using
the MSF method, our model of synchronization-constrained
network growth can now be described as follows. With a
predefined eigenratio Rc, which is determined by the dynamics
of the isolated oscillator, at each time step of the network
growth we introduce a new oscillator into the system and
calculate the eigenratio R of the enlarged network. If R < Rc,
then we say that the enlarged network is synchronizable
and the new oscillator will be accepted; otherwise, the
enlarged network is regarded as nonsynchronizable and the
new oscillator will be rejected. The main task of the present
work is merely to explore the dynamical properties of the
network-growing process, as well as its consequences to the
network structure.

III. THE GROWTH OF CONSTRAINED BA NETWORK

Before presenting our numerical results, we would like
first to give a qualitative description of the possible influence
of synchronization stability on network growth based on
the method of eigenvalue analysis discussed above. This
will be helpful in our selection of the network parameters
in the following simulations, as well as giving an intuitive
understanding of the mechanism of network evolution. Since
we are interested in the case of a bounded MSF, to judge
whether the growing network is synchronizable, we only
need to check the behaviors of λ2 and λn, i.e., the two
boundary eigenvalues of the network coupling matrix. Without
the requirement of synchronization stability (or in the case
of Rc � R), the boundary eigenvalues will be of smooth
trajectories. As schematically plotted in Fig. 1, with the
increase of the network size n, the value of λ2 will be gradually
increased from −n/(n − 1) (the case for a globally connected
network) to the limit λ̃2 ≈ 2/

√〈k〉 − 1; in the meantime, λn

will be decreased from −n/(n − 1) to λ̃n ≈ −2/
√〈k〉 − 1.

Here, 〈k〉 = 2m is the average network degree, and λ̃2,n are
the theoretical predications obtained for large-scale complex
networks [43,44].

When synchronization stability is required, through the
critical eigenratio Rc, the node dynamics will influence the
behaviors of λ2 and λn. More specifically, the critical eigenratio
will set two new limits, λc

2,n, for the developments of λ2 and λ2.
During the process of network growth, once λ2,n touch these
new limits, they will be “stopped” immediately and stay around
there afterward. So, to make the synchronization constraint
have an effect, the necessary condition is λc

2 < λ̃2 or λc
n > λ̃n,

i.e., the value of Rc should be small enough. It should be
noted that, even for a small value of Rc, the synchronization
constraint does not have an effect until the network size
exceeds some critical value, nc. Here, nc is defined as the
point at which R(n) = Rc, which denotes the activation of the
synchronization constraint. As schematically plotted in Fig. 1,
in the region of n < nc, the behaviors of λ2 and λn are identical
to that in the nonconstrained case, indicating a free growth
of the network, while for n > nc, the values of λ2,n remain
around the new limits λ̃2,n. Thus, in the region of n > nc, to
keep the network growing, the new node should be carefully
selected. Speaking alternatively, in this region there is a chance
for the new node to be accepted by the growing network.
At this point, we are interested in the following questions:
(i) What is the probability for the new node to be accepted?
(ii) When will the new node be successfully accepted?
(iii) What will the structure of the generated network look
like?

Guided by the schematic plot of Fig. 1, we set the
parameters in our model of the constrained BA network as
m0 = 10, m = 4, and Rc = 4. The growing process is stopped
when the network has a size n = 2 × 103. We begin by
checking the behaviors of the boundary eigenvalues, λ2,n,
to figure out the critical network size, nc. In Fig. 2, we
plot the variations of λ2,n as a function of the network size
for both the constrained and nonconstrained networks (the
standard BA model). As expected, it is seen that the two
sets of eigenvalues are identical when n < 129, but they
diverge from each other when n > 129. From this observation,
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FIG. 1. (Color online) A schematic plot showing the possible
influence of the synchronization constraint on the behaviors of the
boundary eigenvalues, λ2,n. Without the synchronization constraint,
λ2,n approach the theoretical limits λ̃2,n (the blue-dashed curves).
When the synchronization constraint is added (Rc < R̃), the behav-
iors of λ2,n change at a critical network size nc, and stop at the new
limits λ̃c

2,n set by the node dynamics (the red-solid curves).

we thus identify nc = 129. A slight difference between the
predication (Fig. 1) and the numerical results (Fig. 2) is that,
instead of staying on some fixed values, here λ2 and λn are
found to be of small fluctuations after nc. The fluctuations
are understandable because in our model, the synchronization
stability is characterized by the eigenratio R = λn/λ2 instead
of each individual eigenvalue.

We next investigate the dynamical properties of the growing
process in the constrained network. Notice that a direct
consequence of the synchronization constraint on network
growth is the failure of some node additions, i.e., it may
take many attempts for the network to adopt a new node. To
explore the growing dynamics, the variation and distribution
of the failed additions are thus the first things in which we
are interested. With the same set of network parameters as
in Fig. 1 (m0 = m = 4,Rc = 4), we regrow the network, this
time keeping a record of the failed additions. Denoting δng as

FIG. 2. (Color online) The variations of the boundary eigenval-
ues, λ2,n, as a function of the network size for the nonconstrained and
constrained network growths. The network parameters are m0 = 10,
m = 4, and the growing process is stopped at n = 2 × 103. For the
constrained case, the critical eigenratio is set as Rc = 4. The two sets
of eigenvalues are differentiated at the point nc = 129, indicating
the activation of the synchronization constraint at this point in the
constrained network.

FIG. 3. (Color online) The intermittent growth of the constrained
network. The network parameters are the same as those in Fig. 1.
(a) For Rc = 4, the number of failed additions, δng , as a function of
the network size. (b) The distributions of δng , which follow roughly
a power-law scaling. For Rc = 4, the fitted exponent is about −2.87;
for Rc = 3.8, it is about −3.4. The results of (b) are averaged over
24 network realizations.

the number of failed additions for the network to successfully
adopt a new node, in Fig. 3(a)) we plot the variation of δng

as a function of the network size. It is shown that, after the
critical size nc, the value of δng varies wildly in a wide range,
δng ∈. Since in our model the new nodes are introduced with
a constant speed (with a time interval δtg), the variation of
δng thus manifests an intermittent growing of the network.
To explore this intermittency in depth, we plot in Fig. 3(b)
the distribution of δng . The distribution is found to follow a
power-law scaling, with the fitted exponent about −2.87. It is
noted that, with the change of the synchronization constraint
(the value of Rc), both the range and the distribution of δng

will be adjusted, as indicated by the results of Rc = 3.8 plotted
in Fig. 3(b).

When will a node be successfully added? Or, speaking
alternatively, which nodes in the existing network are more
likely to accept the new node? This is the second question
that we are interested, and it is an important step toward
a full understanding of the network growing dynamics. To
investigate, this time we record the degree information, kf ,
of the nodes in the network that are attached by the new
node but failed to accept it (degree information of the failed
additions), and we make an analysis for the distribution. In
our simulations, to generate a network of size n = 2 × 103

under the constraint Rc = 4, there are a total of about 4 × 103

failed additions, which gives about 8 × 103 records on kf . The
distribution of kf is plotted in Fig. 4(a). An interesting finding
is that the distribution is composed of two well-separated
scalings. Specifically, in the region of kf ∈ [4,100] we have
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FIG. 4. (Color online) The network parameters are the same as
those in Fig. 2. (a) The degree distribution, P (kf ), of the nodes
that failed to accept the new node during the process of network
growth. The distribution is found to be composed of two separate
scalings. For kf ∈ [4,100], it follows roughly a power-law scaling
(inset), with the fitted exponent γ ′ ≈ −1.9, while for kf > 100,
the distribution is roughly exponential, P (kf ) ∼ exp(−1 × 10−2kf ).
(b) Under different synchronization constraints, the increase of the
largest node degree, kmax, as a function of the network size. For the
nonconstrained growth, we have kmax ∝ n1/2; while for constrained
growth, we have roughly kmax ∝ n. The results are averaged over 24
network realizations.

P (kf ) ∼ k
γ ′
f with γ ′ ≈ −1.9, while in the region kf > 100

we have P (kf ) ∼ exp(−1 × 10−2kf ). This feature of two-
scaling distribution is general for the constrained network,
as suggested by the results of Rc = 3.8 plotted in the same
figure. An important finding that can be inferred from this
distribution is that, comparing with the small-degree nodes, the
large-degree nodes in the network are more likely to accept the
new node. (A more detailed analysis will be given later.) This
is especially the case for the behavior of the large-degree nodes
in the network. As a matter of fact, in our simulations it is found
that, at each time step of the network growth, the new node
is always accepted if it is attached to the largest-degree node.
This fashion of node attachment thus indicates the following:
compared with the BA model, in a constrained network the
largest degree, kmax, increases more rapidly. This conjecture is
well verified by simulations. In Fig. 4(b), we plot the variation
of kmax as a function of n for different cases of network growth,
where it is seen clearly that, for the constrained growth, Rc = 4
or 3.8, we have kmax ∝ n, while for the nonconstrained growth
(the BA model), we have kmax ∝ n1/2 [45].

The special form of the distribution P (kf ) plotted in
Fig. 4(a) implies a new type of link attachment (different
from preferential attachment) caused by the synchronization
constraint. The reasoning is the following. During the process

of network growth, if the new node is rejected with equal
probability, i.e., without considering the degree of the attached
nodes, then the network will be still growing by the mechanism
of preferential attachment, � ∼ k, and, as a sequence, the
network will still possess the power-law degree distribution,
P (k) ∼ k−γ , with γ ≈ 3 [4]. If this is the case, then we will
have P (kf ) ∼ P (k)�(k) ∼ k−2 for the degree of the failed
nodes. Apparently, this is not the case observed in numerical
simulations, where P (kf ) is found to have an exponential tail
for large values of kf [Fig. 4(a)]. That is, the real attaching
probability of the constrained network deviates from the
preferential attachment. As preferential attachment plays a key
role in generating a scale-free network, we are thus interested
in the structure of the constrained network. In particular, we
want to compare it with the nonconstrained BA network and
determine the difference.

In our study, the structure of the constrained network is
characterized by the following three quantities [1]: the degree
distribution P (k), the average diameter 〈d〉, and the average
clustering coefficient 〈c〉. The degree distributions of both
the constrained and nonconstrained networks are plotted in
Fig. 5(a), which is obtained from networks of size n = 2 × 103.
It is seen that, despite the value of Rc, in the constrained
networks the scale-free feature still persists in a wide range
of degree. Specifically, in the region of k ∈ [4,100], we have
P (k) ∼ k−2.8 for both the cases of Rc = 4 and 3.8, which is
almost identical to that of the nonconstrained case. However,
in the region of large degree, k > 100, the constrained network
has a clearly long tail. As shown in Fig. 5(a), for the
nonconstrained network the largest degree is 172, while for
Rc = 4 and 3.8 the largest degree is 293 and 428, respectively.
Based on this observation, the constrained network might be
regarded as the embedding of a few super-degree nodes in the
conventional BA-type scale-free network.

Combining the results of Figs. 4(a) and 5(a), we get the
following features of the dynamical growth in a constrained
network. When the new node is not attached to the large-
degree nodes in the network, it has an equal chance to
be rejected, regardless of the degree of the attached nodes.
(The definition of large degree is dependent on the network
parameters. For a network of m = 4 and n = 2 × 102, we
regard k > 100 as large.) This feature of equal rejection
is drawn from the relationship between the two scalings,
P (kf ) and P (k), that are obtained by numerical simulations.
Statistically, the probability for a node of degree k to reject
the new node is proportional to P (k)�(k)/P ′(k), which,
according to our numerical results, is almost constant (∼ k0.1),
i.e., an equal rejection. However, the rejecting probability is
significantly reduced for the large-degree nodes, as can be
partially seen from the exponential tail in the distribution of kf

[Fig. 4(a)]. Noticing the fact that such a tail is absent in
the distribution P (k), the quick decrease of P (kf ) thus also
implies a significant variation of the rejecting probability
among the large-degree nodes. As a consequence, in the
constrained network the largest degree, kmax, is expected
to increase rapidly with the network size, a fact shown in
Fig. 4(b).

It is worth noticing that the special form of degree
distribution found in the constrained network, i.e., power-law
scaling followed by a long tail, is also observed in many
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FIG. 5. (Color online) The topological properties of the con-
strained networks generated by Rc = 4 and 3.8. The other network
parameters are the same as those in Fig. 2. (a) The degree distributions
of the constrained networks. The fitted slope is about −2.8 in the
region of k ∈ [4,100]. With the decrease of Rc, the distribution
is found to be gradually extended to the region of large degree.
Each datum is averaged over 24 network realizations. (b) The
variation of the network average diameter 〈d〉 with the network
size. (c) The variation of the network average clustering coefficient
〈d〉 with the network size. As a comparison, the results of the
nonconstrained BA scale-free network are also plotted in each
subgraph.

realistic systems, and might have important implications
on system performance [2]. For instance, in studying the
degree distribution of the Internet at the AS level [46], it
is observed that the degree of a few of the network nodes
is apparently larger than those predicted according to the
BA model. For a technological network like the Internet, the

embedding of a few super-degree nodes could largely improve
the system performance, as the average network diameter
can be significantly reduced. However, with the emergence
of super-degree nodes, the risk of network security will also
be increased. For instance, the network connectivity could be
affected significantly if the few super-nodes are intentionally
removed [47]. Thus, the sparse super-degree nodes embedded
in realistic networks might be due to the balance between
network performance and security.

The variations of the network average diameter, 〈d〉, and
the average clustering coefficient, 〈c〉, with the network size
are plotted in Figs. 5(b) and 5(c), respectively. (Please refer to
Ref. [48] for detailed definitions of 〈d〉 and 〈c〉.) In Fig. 5(b),
it is seen that, when the network size exceeds nc, the value
of 〈d〉 for the constrained network becomes smaller than that
of the nonconstrained network. Moreover, with the increase of
n, the difference between the constrained and nonconstrained
networks is gradually enlarged. Also, by decreasing Rc, it is
found that the curve of 〈d〉 is moving downward (the case of
Rc = 3.8 in the figure). Similar behavior is also observed for
the network clustering coefficient 〈c〉. As shown in Fig. 5(c),
the curve of 〈c〉 for Rc = 4 is above that of the nonconstrained
network, and is moving upward with the decrease of Rc.
The decreased 〈d〉 (increased 〈c〉) in the constrained network
is surely due to the emergence of the super-degree nodes.
For the other network parameter fixed, in general the more
heterogeneous the degree distribution is, the smaller (larger)
is the average diameter (clustering coefficient) [48].

IV. THE CONSTRAINED NETWORK GROWTH UNDER
RANDOM ATTACHMENT

As discussed in Ref. [1], both growth and preferential
attachment are necessary to generate networks of scale-
free property. For a growing network without preferential
attachment, the generated network will be non-scale-free. For
instance, if the new nodes are connected to the existing nodes
in a random fashion, the generated network will have an
exponential degree distribution [4,45], i.e., the random growth
network. However, for some realistic networks where the
preferential attachment is not satisfied naturally, the network
structure is still observed to possess the scale-free feature,
e.g., the cellular [49] and ecological networks [50]. This
phenomenon has inspired studies about the alternative mech-
anisms of preferential attachment in network generation, e.g.,
the copying mechanism and edge redirection [51,52]. Here,
inspired by the numerical findings that the link attachment can
be modified by the synchronization constraint [Fig. 4(a)], we
are curious to see what happens to the structure of the random
growth network if it is constrained by the synchronization
stability.

To check it out, in our second model the preferential
attachment is replaced by a random attachment, while the other
settings are the same as that of the constrained BA model
investigated in the previous section. Still, we are interested
in the dynamical features of the growth and the topological
properties of the generated network. The distribution of
the failed additions, δng , is plotted in Fig. 6(a), where
the nonsmooth and intermittent features are observed again.
Compared with the constrained BA model [Fig. 3(b)], it is
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FIG. 6. (Color online) With a random attachment, the dynamical
network growth under the constraint Rc = 4 is shown. The network
parameters are the same as those in Fig. 2, but the growing process is
stopped at n = 600. (a) The distributions of the failed additions δng ,
which roughly have a power-law distribution with a fitted exponent, is
about −1.6. (b) The degree distribution of the attached nodes failed
to accept the new nodes, which has a power-law scaling, with the
fitted exponent about −3.4. The results are averaged over 24 network
realizations.

noticed that in Fig. 6(a) the value of δng varies in a much
wider range (extended by about one order of magnitude) and
has a more heterogeneous distribution (the fitted exponent is
about −1.6, while in the constrained BA model it is about
−3.4). The wild variation of δng implies that, compared to the
constrained BA model, the growth of the constrained random
network is much slower. In fact, in our simulations, with the
same amount of trying additions (about 1 × 104), while the
constrained BA network is grown to n = 2 × 103, the size of
the constrained random network is only about 600.

We next check the property of the failed additions in
the constrained random network, i.e., the degree distribution,
P (kf ), of the nodes that failed to accept the new nodes
during the process of network growth. The numerical results
are plotted in Fig. 6(b). In contrast with the two-scaling
distribution observed in the case of the nonconstrained BA
network [Fig. 4(a)], it is seen that in the case of the constrained
random network, the distribution is well fitted by a single
power-law scaling, P (kf ) ≈ k

γ ′
f , with γ ′ ≈ −3.4 [Fig. 6(a)].

As in this model the new node is originally attached to the
network in a random fashion, it is somewhat surprising to
see that here P (kf ) shows a power-law scaling. Since the

FIG. 7. (Color online) For Rc = 4, the degree distribution of
the constrained random network of size n = 600 is shown. The
distribution has the power-law scaling P (k) ∼ k−γ , with γ ≈ −2.7.
As a comparison, the degree distribution of the nonconstrained
random network of the same size is also plotted, which has
exponential scaling (inset). Each datum is averaged over 24 network
realizations.

distribution P (kf ) is also dependent on the degree distribution
of the generated network, to explore the nature of the failed
additions in depth, it is necessary to analyze the structure of
the generated network.

The degree distribution of the constrained random network
is plotted in Fig. 7. A novel finding is that, although it is of
random attachment, the network has a clear scale-free feature.
Specifically, we have P (k) ∼ k−γ , with the fitted exponent
γ ≈ −2.7. Compared with the case of the constrained BA
network [Fig. 5(a)], it is also seen in Fig. 7 that the super-
degree nodes disappear. To identify the scale-free feature of
the generated network, we regenerate the network without the
synchronization constraint and compare its degree distribution
with that of the constrained case. As shown in the inset of
Fig. 7, the degree distribution of the nonconstrained network
follows the exponential scaling, which is clearly different from
the constrained network.

How could a scale-free network be generated without pref-
erential attachment? The key to answering this question is the
synchronization constraint. Due to the constraint, only nodes
that maintain synchronization stability are accepted during
the process of network growth. Regarding node selection as
a new mechanism of link attachment, the scale-free feature
that appeared in the constrained random network thus seems
to suggest the following: the synchronization constraint plays
a similar role to the preferential attachment in the network
growth. To verify this conjecture, a detailed study on the
behavior of the eigenvalues of the growing network will be
necessary, since it is the connection between the network
structure (the eigenspectrum) and the the synchronization
behaviors (the eigenratio). In particular, when a new node
is introduced into the network, we need to calculate the new
eigenvalue, λnew, accompanying this new addition and evaluate
its influence on the synchronization of the enlarged network.

066101-7



CHENBO FU AND XINGANG WANG PHYSICAL REVIEW E 83, 066101 (2011)

V. MECHANISM ANALYSIS AND NUMERICAL
VERIFICATIONS

A. Eigenvalue analysis

As we discussed in Sec. II, for the general case of a
bounded MSF function, the network synchronizability is
jointly determined by the smallest nonzero eigenvalue, λ2, and
the largest eigenvalue λn of the network coupling matrix. This
means that if the addition of the new node does not change
the values of λ2 and λn of the network, then the network
synchronizability will not be affected. Speaking alternatively,
if at a moment the network contains n synchronizable nodes
and a new node is introduced, it is highly possible that the new
node will be accepted if the new eigenvalue, λnew, is within the
range [λ2,λn]. It should be noted that in a networked system,
the addition of a new node will also influence some of the
existing eigenvalues, i.e., the eigenvalues are interdependent.
However, for the influenced eigenvalues, a general feature is
that they are close to λnew in the eigenvalue spectrum [43].
Regarding this feature, the location of λnew in the spectrum
is thus of crucial importance to the stability of network
synchronization. Specifically, the farther away λnew is from
the boundary eigenvalues in the existing eigenspectrum, the
less the boundary eigenvalues will be affected, and the higher
is the possibility that the new node will be accepted. Therefore,
due to the synchronization constraint, the new eigenvalue
(accompanied with the new node) is actually “preferentially”
selected.

The “preferential” selection of the new eigenvalue is
verified by numerical simulations. In Fig. 8 we plot the
eigenspectrum of the growing network at different sizes, where
it is clearly seen that the number of eigenvalues in the middle
part of the spectrum increases much more quickly than that
of the boundary regions. In particular, as the network size
increases from n = 500 to 2 × 103, more than 30% of the
new eigenvalues are found to be located in the narrow range

FIG. 8. (Color online) The evolution of the eigenspectrum in the
model of a constrained random network with Rc = 4. A clear feature
is that the middle part of the spectrum increases much more quickly
than the boundary regions, indicating a “preferential” selection of the
new eigenvalues due to the synchronization constraint.

of [0.9,1.1], while in the boundaries regions, with the same
scope, it is less than 3%.

B. Analysis of the star-structure network

How is the “preferential” selection of the new eigenvalue
reflected in the node attachment? Because of the complicated
relationship between the network nodes and eigenvalues (a
many-to-many mapping) [53], in complex networks it is gen-
erally difficult to have a precise prediction of the relationship
between the new eigenvalue and the attaching fashion of
the new node. More specifically, to generate a predefined
eigenvalue λnew, we do not know how the new node should be
attached to the network. Here, to investigate this question in
a qualitative manner, we adopt in the following the simplified
model of a star-structure network, which captures many
essential features of the complex network. The star network
considered here consists of n − 1 nodes and n − 2 links, with
the node labeled 1 at the center and the other n − 2 nodes at
the periphery. Using the coupling scheme of Eq. (2), the star
network has three distinct eigenvalues: λ1 = 0, λi=2,...,n−2 =
−1, and λn−1 = −2. To study the correspondence between
the attachment and the eigenvalue, we add a new node into
this network by randomly attaching it with one of the existing
nodes and monitoring the change of the eigenspectrum for the
new eigenvalue. Due to the symmetry of the network structure,
the enlarged network (of size n) has only two possibilities: the
node is connected to either (i) the central node or (ii) one of
the peripheral nodes.

For the first case, it is straightforward to see that the
new addition brings in λnew = −1, while all the “old” n − 1
eigenvalues are kept unchanged. Since for the star network
λ ∈ [−2,0], the new eigenvalue is thus located in the middle
of the eigenspectrum. For the second case, we have n − 4
eigenvalues equal to −1, while the other eigenvalues are
governed by the equation

2(n − 2)(1 + λ)4 − (3n − 7)(1 + λ)2 + (n − 3) = 0. (4)

From this equation, we get the following two new eigenvalues
in the spectrum:

λ2 = −1 +
√

(n − 3)/(2n − 4),

λn−1 = −1 −
√

(n − 3)/(2n − 4). (5)

Clearly, λ2 > −1 and λn−1 < −1, i.e., the two new eigenvalues
are away from the center of the eigenspectrum. Moreover, it
can be seen from Eq. (5) that, with the increase of n, λ2 and λn−1

will approach the limits −1 + 1/
√

2 and −1 − 1/
√

2, respec-
tively, i.e., toward the boundaries of the eigenspectrum. So, for
this simplified network model, the correspondence between
the new eigenvalue and the node attachment is clear: to add an
eigenvalue at the middle part of the eigen-spectrum, we should
attach “preferentially” the new node to the hub node; other-
wise, to make the new eigenvalue appear in the boundary re-
gions, the new node should be attached to the peripheral nodes.

Regarding the hub and peripheral nodes in the star network
as special examples of the large- and small-degree nodes in
the complex network, respectively, it is reasonable to expect
that a similar correspondence (between the new eigenvalue
and the node attachment) should be observed in our model of
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FIG. 9. For a standard BA network of size n = 2 × 103 and
average degree 8, the fluctuations of the boundary eigenvalues, λ2 and
λn, are shown when different nodes in the network are attached. As
the degree of the attached node increases, the fluctuations are found to
be gradually narrowed, implying that the network synchronizability
is less affected by the node attached to the large-degree nodes.

a constrained network. To verify this, we generate a network of
size n = 2 × 103 (by the standard BA model), and randomly
add a new node onto it. Here, for simplicity, the new node
is set to have only one link. The addition is tried 500 times.
For each addition, we record the degree, k, of the attached
node in the network, and also the boundary eigenvalues, λ2

and λn, of the enlarged network. The distribution of λ2 and
λn as a function of k is plotted in Fig. 9. It is seen that, as
the degree of the attached node increases, the fluctuations of
the boundary eigenvalues are gradually narrowed. That is, the
larger the degree of the attached node is, the less variation
there will be in the boundary eigenvalues—an indication of
the link preferential attachment.

Now the emergence of scale-free feature in constrained
random network (Fig. 7) can be explained heuristically as
follows. The synchronization requirement poses a constraint
on the behaviors of the boundary eigenvalues, R = λn/λ2 <

Rc, which, during the process of network growth, will guide the
selection of the newly added eigenvalues. In particular, when
a new eigenvalue is introduced, it is required that the boundary
eigenvalues remain stable and are not influenced. This
requirement makes it favorable to select the new eigenvalue
from the intermediate regime of the eigenspectrum, while, to
generate an intermediate eigenvalue, the new node will tend
to connect to the large-degree nodes in the network. So, we
see that in the constrained random network it is actually the
synchronization constraint that provides the mechanism for
preferential attachment. The logic behind the analysis is as

follows: network synchronizability → eigenvalue selection →
link preferential attachment.

C. Numerical verification

Let us now discuss the realistic situation. So far, all our
findings are based on the method of eigenvalue analysis, in
which many of the intrinsic properties of the node dynamics
have been neglected. As we explained in the Introduction, the
eigenvalue analysis is based on the assumption of time-scale
separation, Ts � Tg , which, in a realistic situation, is usually
not met. This is especially the case for large-scale networks,
where the transient time for network synchronization could
be very long [54,55]. In this regard, direction simulations of
dynamical complex networks are necessary.

To this end, we employ the chaotic logistic map, xt+1 =
f (xt ) = axn(1 − xn) with a = 4, as the node dynamics, and we
set the coupling function as H (x) = x. For this logistic map,
the synchronization constraint can be calculated analytically,
which is Rc = 3. The uniform coupling strength is ε = 1.
The initial network consists of six globally connected maps,
with their initial states chosen randomly from the range (0,1).
After the network is synchronized, we start to grow it by
subsequently introducing new nodes (of dynamics identical
to the existing nodes) onto it. The new node is of random
initial condition and is connected to six of the existing nodes
in a random fashion. Whether the new node j is accepted by
the network is judged by the synchronization error 	(t) =

n

i,j=1|xj (t) − xi(t)|/[n(n − 1)], with i = 1, . . . ,n the node
index. After a transient period of 500 iterations, if 	 < 10−5,
the enlarged network is regarded as synchronizable and the
new node will be accepted. Otherwise, the new node will
be rejected. The growing process continues until the network
reaches the size n = 600. The degree distribution of the failed
additions, P (kf ), is plotted in Fig. 10(a). It is found that the
distribution follows roughly a power-law scaling, with the
fitted exponent at about −3.8.

The degree distribution, P (k), of the generated network
is plotted in Fig. 10(b). It is also found to follow a power-
law scaling, with the fitted exponent at about −3.2. As
a comparison, networks that are generated by the same
set of network parameters but without the synchronization
constraint are also analyzed. As depicted in Fig. 10(b), the
difference between the degree distributions of the constrained
and nonconstrained networks is distinct. These results are
consistent with the eigenvalue analysis [Figs. 6(b) and Fig. 7],
especially the power-law feature of the distributions.

In addition to the case of a = 4 of the logistic map,
we have also checked numerically the growth of complex
networks constituted by other local dynamics, including the
chaotic logistic map with the parameter a = 3.8, and the
chaotic Rössler oscillator [56]. The general observation is
that, if the adiabatic condition Ts � Tg is fulfilled and the
synchronization constraint plays effect, the generated network
always has a clear scale-free feature when the network size is
large enough (n > 500). Additionally, the scale-free feature of
the constrained network is also found to be robust to the noise
perturbations. For instance, for the same network growth as
that of Fig. 10, we have added independent and identically
distributed (i.i.d.) random noise of amplitude 1 × 10−2 onto
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FIG. 10. (Color online) For a growing network of coupled chaotic
logistic maps, (a) the degree distribution, P (kf ), of the failed nodes,
and (b) the degree distribution, P (k), of the generated network of
size n = 600. The fitted exponents in (a) and (b) are −3.8 and −3.2,
respectively. As a comparison, the degree distribution of the network
generated without the synchronization constraint is also plotted.
Please see the text for a detailed description of the model. Each
datum is averaged over 24 network realizations.

the dynamics of the network nodes, and we found that the
network structure is almost the same as the noise-free case.

VI. DISCUSSIONS AND CONCLUSION

In network modeling, a key ingredient for generating net-
works of scale-free features is the link preferential attachment.
Specifically, to have a power-law degree distribution, the
probability for an existing node to be attached by the new
link should be increasing linearly with its degree. If this
linear relationship is not fulfilled, the scale-free feature of
the network will be generally destroyed; e.g., the nonlinear
preferential attachment �(k) ∼ kα with α > 1 or α < 1 will
lead to non-scale-free networks [57]. Noticing that in our
model of a constrained random network, although the new
node is attached to the network in a random fashion, the
generated network is still of a clear scale-free feature. This
makes it interesting to check whether the synchronization
constraint—a new mechanism for node attachment—could
provide “exactly” the same function as the preferential attach-
ment. In other words, if we consider only the accepted nodes,
we want to know from the numerical results whether they are
attached to the network in the form of a linear preferential
attachment.

In our simulations, we have focused mainly on two types
of degree distributions: one for the failed nodes, P (kf ), and
the other for the generated network, P (k). Assuming that after
a transient process of network growth these distributions are
stabilized onto some stable forms (this feature is observed in
our simulations), then we have

P (kf ) = P (k)/�′(k), (6)

with �′(k) the attaching function induced by the synchroniza-
tion constraint. The eigenvalue analysis of Figs. 6(b) and 7(a)
shows that P (ka) ∼ k−3.4 and P (k) ∼ k−2.7. From Eq. (6), we
thus have �′(k) ∼ k0.7. The direction simulations of Fig. 10
show that P (ka) ∼ k−3.8 and P (k) ∼ k−3.2. We thus have
�′(k) ∼ k0.6. In both cases, the attachment is of the nonlinear
form �′(k) ∼ kα , with α < 1. As we discussed above, in the
conventional model of a growing network, the nonlinear at-
tachment will usually destroy the scale-free feature. However,
our study suggests that, even with a nonlinear attachment,
the generated network could still be possessing the scale-free
feature.

The generation of a scale-free network without a linear
preferential attachment might be due to the following reasons.
One possibility could be the limited simulations. In our study,
due to the heavy computation, the network growth is stopped
at n = 2 × 103 for eigenvalue analysis and n = 600 for direct
simulations. At the current stage, it is not clear whether
the obtained scalings, mainly the two degree distributions,
still stand when the network size is large enough, e.g., n >

5 × 103. If the scalings vary with the network size, then the
above derivation of nonlinear attachment should be rechecked.
Another possibility could be that the nonlinear attachment
indeed could generate a scale-free network. This is possible
because in our model of a constrained network, the attachment
is dynamically varying with the network collective dynamics,
which might provide a totally new mechanism for preferential
attachment. We hope these questions can be addressed in future
studies.

An important message delivered by the present study is
that, besides the aspects of robustness and efficiency (small
network diameter), a scale-free property is also a natural
demand of the stability of network dynamics. This provides
a solid base for the emergence of a scale-free feature in the
evolution of dynamical complex systems, say, for example,
neural networks [2]. Meanwhile, as a universal phenomenon in
nature, the synchronization of networked nonlinear oscillators
has important implications to the functionality of many
realistic systems, ranging from biological to technological
systems [58]. The present study also indicates that, as two
typical phenomena of complex systems, the synchronization
behavior and the scale-free property are closely related to each
other.

In Ref. [7], a method for measuring the attaching form of
realistic networks has been proposed. In this method, without
the problem of node failures, the preferential attachment can
be inferred from the degree of the attached nodes in a direct
manner. We wish to note that this method is essentially the
same as the analysis of failed additions, i.e., P (kf ), used
in the present paper, since the probability of successfully
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attaching a link is inversely proportional to that of missing
the link. Actually, this relationship has been used in Eq. (6).
We also wish to note that, in characterizing the network
structure, we have employed only the very basic topological
properties, including the degree distribution, the average
network diameter, and the clustering coefficient. Currently,
it is still unknown whether the constrained network has some
unique topological properties, e.g., the community structure,
node assortativity, etc. [48], and how these properties are
dependent on the synchronization constraint.

In summary, we have investigated the growth of a complex
network under the constraint of network synchronization.
Our studies show that, constrained by the synchronization

stability, the network will grow in a selective and dynamical
fashion. An interesting finding is that, with dynamical growth,
the generated network presents the scale-free feature even
without the linear form of preferential attachment. Our studies
highlight the fact that, driven by the network collective
dynamics, the evolution of the network structure could also
consist of rich dynamics.
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